ANN based Expert System to Predict Disease in Cardiac Patients at Initial Stages
نویسنده
چکیده
Objective of this research is to develop an expert system for the preliminary investigation of cardiac abnormality in human beings. Artificial Neural Network (ANN) is judged best for the prediction of heart abnormalities in cardiac patients at initial stages. Our research is intended to employ an Artificial Intelligence (AI) technique in an automated solution, having minimum error bounds. An ANN based expert system is designed and developed, which identifies presence or absence of cardiac disease in patients by considering best practiced disease symptoms. The proposed expert system may help the clinicians in the preliminary investigation of cardiac abnormality in human beings. ANN based Expert System to Predict Disease in Cardiac Patients at Initial Stages
منابع مشابه
Using Methods Based on Neural Networks to Predict and Manage Diseases (A Case Study of Forecasting the Trend of Corona Disease)
Aim and background: Forecasting methods are used in various fields; one of the most important fields is the field of health systems. This study aimed to use the Artificial Neural Network (ANN) method in forecasting Corona patients in Iran. Method: The present study is descriptive and analytical of a comparative type that uses past information to predict the future, the time series of Corona in...
متن کاملکاربرد مدل شبکه عصبی مصنوعی در پیشبینی پاسخهای آمیخته بیماری قلبی
Background: In epidemiological and medical studies, sometimes researchers are faced for prediction of two response variables (simultaneously) based on a number of independent variables. When the response variable is mixed, according to established limits and absence of assumption, the classical statistical methods are not enough efficient for classification and prediction goals. The p...
متن کاملارائه الگوریتم جدید Fuzzy SARSA بهمنظور پیش بینی نوسانات سطح قند خون بیماران مبتلا به دیابت نوع یک
Background: One of the serious complications of type 1 diabetes is a sudden increase and drop in blood glucose levels causing risks of anesthesia and coma. Thus, an important step towards the optimal control of the disease is to use intelligent methods with low error rate and available information in order to predict and prevent such complications. In this paper, a combined Fuzzy SARSA algorith...
متن کاملFuzzy Logic-Based Model to Stratify Cardiac Surgery Risk
Background: Medical practice is usually performed in a context of uncertainty, where expert knowledge has shown to be efficient in the decision-making process. Objective: The aim of this study was to develop and validate a fuzzy logic-based model to predict cardiac surgery mortality risk. Methods: Four hundred and fifty patients undergoing cardiac surgery were prospectively included in the stud...
متن کاملA Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJEHMC
دوره 6 شماره
صفحات -
تاریخ انتشار 2015